نظریه ماکسول با آزمایشهایی با امواج الکترومغناطیسی تایید شدند و آزمایشهای هرتز خیلی زود برای تمام دانشمندان سراسر جهان شناخته شدند. و بدین ترتیب اندیشه استفاده از امواج الکترومغناطیسی برای مخابرات و حتی برای انتقال بی سیم ، انرژی پدیدار شد.
پوپوف فیزیکدان و مهندس برق با تکرار آزمایشات هرتز طرح سوار کردن را بهبود بخشید. و در خلال سال 1889 توانست در تشدید کنندههای گیرنده حرفههایی را بوجود آورد که در سالن بزرگ و بدون تاریک کردن ، مرئی باشد. بزودی او متوجه شد که برای استفاده علمی از امواج الکترومغناطیسی ، اول از همه گیرنده حساس و مناسبی مورد نیاز است.
ویژگیهای اصلی اولین گیرنده پوپوف چه بود و اساس کار آن چیست؟ پوپوف برای بهتر شدن حساسیت گیرنده از پدیده تشدید استفاده کرد. مزیت دوم اختراع پوپوف در آرایه آنتن گیرنده بسیار خوبی بود که گستره دریافت امواج را به مقدار خیلی زیادی افزایش داد و هنوز هم در ایستگاههای دریافت موج رادیویی بکار میروند. ویژگیهای ممتاز در گیرنده پوپوف در روش ثبت فیزیک امواج است. برای این منظور پوپوف بجای جرقه وسیله خارجی را بکار برد، یعنی موج یابی را که به تازگی توسط برنلی اختراع شده بود، در تجارب آزمایشگاهی بکار گرفت.
برادههای ظریف آهن در یک لوله شیشهای قرار داده میشوند دو سیم به دو انتهای شیشه محکم شدهاند، بطوری که با برادهها تماس دارند. در شرایط عادی مقاومت الکتریکی بین برادههای مجزا نسبتا زیاد است، بطوری که کل موج یاب مقاومت بالایی دارد. موج الکترومغناطیسی جریان متناوب با فرکانس بالا در مدار موج یاب ایجاد میکند و جریان مخصوص بین برادهها باعث میشود که آنها به هم جوش بخورند. در نتیجه مقاومت موج یاب ناگهان افت میکند.
برای افزایش مقاومت موج یاب تا مقدار اولیه و حساس کردن دوباره آن به امواج الکترومغناطیسی باید آنرا تکان داد. پوپوف موج یابی را در مداری شامل باتری و یک رله تلگراف قرار داد. قبل از وارد شدن موج الکترومغناطیسی مقاومت موج یاب زیاد است و جریان جاری از آن و رله ضعیف است و آرمیچر جذب آهنربای الکتریکی پایینی نمیشود.
وقتی که موج الکترومغناطیسی ظاهر شد، مقاومت امواج موج یاب افت میکند، جریان الکتریکی به تندی فردی مییابد و رله آرمیچر جذب آهنربای الکتریکی میشود. بنابراین اتصال رله آهنربای پایینی که یک زنگ الکتریکی معمولی را به باطری وصل میکند، برقرار میشود. چکش به زنگ میخورد یا سوراخی بر نوار کاغذی متحرک ثبت میکند و به این ترتیب ورود موج خبر داده میشود. در حرکت به عقب چکش به موج یاب میخورد و در نتیجه حساسیت آن برقرار میماند. به این ترتیب پوپوف به اصطلاح رله مدار اتصال را تحقق بخشید.
انرژی خیلی کم امواج ورودی بطور مستقیم برای دریافت (مثلا برای هر جرقه) بکار نمیرود، بلکه برای کنترل چشمه انرژی که وسیله ثبت کننده را تغذیه میکنند، بکار گرفته میشوند. در گیرندههای رادیویی امروزی ، لامپهای الکترونی جایگزین موج یاب شدهاند، ولی اساس رله به قوت خود باقی است. لامپ الکترونی اصولا مثل رله کار میکند. سیگنالهای ضعیفی که به لامپ داده میشوند قدرت و جریان چشمههای تغذیه لامپ را کنترل میکنند.
به علاوه پوپوف در گیرندهاش اساس پسخوراند را که هنوز هم در مهندسی رادیو بکار میرود، نشان داد. سیگنال تقویت شده در خروجی گیرنده (مدار زنگ الکتریکی) بطور خودکار بر ورودی گیرنده (مدار موج یاب) اثر میکند. پسخوراند در اختراع پوپوف از اساس امر به کلی تازهای است.
پوپوف در بررسیهای بیشتری که همراه با ریبکین آنجام داد به دریافت سیگنالهای صوتی نیز پی برد و معلوم شد که اگر سیگنالها برای بکار انداختن موجیاب خیلی ضعیف باشند، تماسهای ناچیز برادهها به صورت آشکارساز عمل میکند. و هر سیگنالی با صدایی در تلفن متصل به موج یاب همراه است. این کشف امکان داد تا گستره مخابرات رادیویی وسیع شود.
قدم بعدی که در تکامل رادیویی خیلی سریع پس از اختراع پوپوف برداشته شد و آن بهبود فرستندهها بود فاصله جرقه را از آنتنها حذف کردند و بجای آن مدار نوسانی خاصی قرار دادند که به صورت چشمه نوسانها کار میکرد. آنتن متصل به این مدار به صورت تابشگر امواج عمل میکند. اختراع لامپهای الکترونی توسط لوی دوفارست (ت1906) دانشمند آمریکایی که راه را برای ایجاد چشمههای نوسانهای الکتریکی نامیرا باز کرد، در تکامل رادیو اهمیت فوق العادهای داشت. این اختراع نه فقط سیگنالهای تلگرافی ، بلکه انتقال صوتهای کلامی ، موسیقی و غیره را نیز توسط رادیو میسر ساخت، یعنی مخابرات بی سیم و پخش رادیویی را تحقق بخشید.
در مکانیک کلاسیک و ترمودینامیک تلاش ما بر این است که کوتاهترین وجمع و جورترین معادلات یا قوانین را که یک موضع را تا حد امکان بطور کامل تعریف میکنند معرفی کنیم. در مکانیک به قوانین حرکت نیوتن و قوانین وابسته به آنها ، مانند قانون گرانش نیوتن، و در ترمودینامیک به سه قانون اساسی ترمودینامیک رسیدیم. در مورد الکترومغناطیس ، معادلات ماکسول به عنوان مبنا تعریف میشود. به عبارت دیگر میتوان گفت که معادلات ماکسول توصیف کاملی از الکترومغناطیس بدست میدهد و علاوه برآن اپتیک را به صورت جزء مکمل الکترومغناطیس پایه گذاری میکند. به ویژه این معادلات به ما امکان خواهد داد تا ثابت کنیم که سرعت نور در فضای آزاد طبق رابطه (C = 1/√μ0 ε0) به الکترومغناطیس|کمیتهای صرفا الکتریکی و مغناطیسی مربوط میشود.
یکی از نتایج بسیار مهم معادلات ماکسول ، مفهوم طیف الکترومغناطیسی است که حاصل کشف تجربی موج رادیویی است. قسمت عمده فیزیک امواج الکترومغناطیسی را از چشمههای ماورای زمین دریافت میکنیم و در واقع همه آگاهیهای که درباره جهان داریم از این طریق به ما میرسد. بدیهی است که فیزیک امواج الکترومغناطیسی خارج از زمین در گسترده نور مرئی از آغاز خلقت بشر مشاهده شدهاند.
![]() |
امواج الکترومغناطیسی یک رده از امواج است که دارای مشخصات زیر است:
امواج الکترومغناطیسی از طولانیترین موج رادیویی ، با طول موجهای معادل چندین کیلومتر ، شروع شده پس از گذر از موج رادیویی متوسط و کوتاه تا نواحی کهموج ، فروسرخ و مرئی امتداد مییابد. بعد از ناحیه مرئی فرابنفش قرار دارد که خود منتهی به نواحی اشعه ایکس ، اشعه گاما و اشعه کیهانی میشود. نموداری از این طیف که در آن نواحی قراردادی طیفی نشان داده میشوند در شکل آمده است که این تقسیم بندیها جز برای ناحیه دقیقا تعریف شده مرئی لزوما اختیاریاند.
![]() |
هر روز نمایشگرهای کریستال مایع یا LCD:Liquid Crystal Display را در اطراف خود میبینید. از تلفن همراهتان گرفته تا ساعت دیجیتالی یا نمایشگرهای تلویزیون و کامپیوتر.
نام کریستال مایع کمی نا آشنا و غیر معمول به نظر میرسد چون تصوری که از کریستال داریم مادهای سخت و کاملاً جامد است. بیایید در این مورد بیشتر بدانیم و سپس به سراغ معرفی صفحه نمایش LCD برویم.
همه ما میدانیم که سه حالت ماده وجود دارد. جامد، مایع و گاز. مولکولهای جامد در قید نیروی بین مولکولی هستند و به همین دلیل با نظم مشخصی جسمی معمولاً سخت را تشکیل میدهند. در مقابل مولکولهای مایع از نیروی جاذبه مولکولی کمتری برخوردار هستند ولی باز هم این نیرو به اندازهای است که آنها را با هم متحد قرار دهد و مانند گاز آزادانه در محیط، به صورت بینظم حرکت نکنند.
در این میان بعضی مواد حالتی بین مایع و جامد به خود میگیرند. به این معنی که هم مانند جامد در قید نیروی بین مولکولی هستند و هم مانند مایع به حالت سیال حرکت میکنند. کریستال مایع بیشتر به حالت مایع تمایل دارد تا جامد.
با این حال مقدار گرمایی که برای مایع کردن کریستال جامد نیاز است تقریباً زیاد است. به همین دلیل است که صفحه نمایشهای LCD در دماهای مختلف رفتار غیر عادی از خود نشان میدهند.
با توجه به نوع کریستال، انواع مختلفی از کریستال مایع وجود دارد. نوعی از کریستال مایع که از آن در ساخت LCD استفاده میشود نسبت به عبور جریان رفتارهای مختلفی از خود نشان میدهد. یکی از این رفتار عبور و گسیل نور از خود است.
کریستالهای مایع را به دو دسته تقسیم میکنند. نوعی از آن گرما گرا هستند و به تغییرات گرمایی واکنش نشان میدهند. نوع دیگر به تغییرات شیمیایی واکنش نشان میدهند.
نوع اول را نیز از نظر ساختار مولکولی به دو نوع تقسیم میکنند. نوعی که در شکل گیری در محیط به حالت تصادفی شکل میگیرد و نوع دیگری که خود حالت مشخص و آرایش مخصوصی دارد.
شکل گیری نوع دوم بستگی به اثر یک عامل خارجی دارد. این عامل میتواند یک جریان الکتریکی باشد و یا یک قالب فیزیکی که کریستال تحت آن شکل گیرد. کریستال مایع معمولاً حالتی گره مانند به خود میگیرند ولی با عبور جریان رشتههای آنها از یکدیگر باز میشوند و به صورت منظم شکل میگیرند.
در ساخت LCD چهار موضوع کلی وجود دارد:
• اینکه نور میتواند قطبی شود
• کریستال مایع میتواند نور را تغییر و از خود عبور دهد
• ساختار کریستال مایع با عبور جریان تغییر میکند
• و اینکه موادی شفاف وجود دارند که جریان را از خود عبور میدهند
برای ساخت LCD ابتدا نیاز به دو شیشه قطبی شده (Polarized) نیاز داریم. روی طرفی از شیشه که قطبی نشده است مادهای پلاستیکی کشیده میشود. این ماده باعث میشود تا شبکههایی بر روی سطح شیشه ایجاد شود.
سپس بر روی این لایه پلاستیکی، لایهای از کریستال مایع نیز کشیده میشود. شبکههای تشکیل شده از پلاستیک به کریستال مایع شکل و فرم میدهند. سپس صفحههای شیشه قطبی شده که با روکشهای پلاستیکی و کریستالی آماده شدهاند را در ردیفهای عمودی و افقی در مقابل یکدیگر قرار میدهند.
با عبور نور از هر کدام از لایهها، سرعت و زاویه لرزش آن تغییر میکند. در انتها اگر زاویه و جهت گیری نور با شبکه تشکیل شده از پلاستیک بر بروی صفحه انتهایی مطابق باشد، نور از آن عبور میکند.
همانطور که گفتیم با القای جریان به کریستال مایع شکل گره مانند آن باز میشود. در این حالت نور را در زاویه و جهت گیری متفاوت با خطوط شبکه مانند لایه بیرونی قرار میدهد و نور را از خود عبور نمیدهد و آن قسمت از کریستال تاریکتر به نظر میرسد.
کریستال مایع به هیچ عنوان از خود نور گسیل نمیکند. به همین دلیل برای تشکیل تصویر به غیر از القای جریان، نیاز به منبع خارجی نور نیز داریم.
برای درک بهتر این مطلب به یک ساعت دیجیتالی نگاه کنید. قسمتی از صفحه که اعداد در آن نمایش داده نمیشوند روشن است. این نوع صفحههای LCD معمولاً دارای منبع نور خارجی نیستند و تنها نور محیط را بازتاب میدهند. سپس با القای جریان در کریستال مایع از انعکاس نور در قسمتی که میخواهیم آن را نمایش دهیم جلوگیری میکنیم و به جای ایجاد تصویر با روشن کردن، با خاموش کردن مناطقی از صفحهای روشن تصاویر را نمایش میدهیم.
این نوع LCDها برای صفحه نمایشهایی مناسب هستند که تصاویری مشخص را همواره نشان میدهند. صفحههای 7 قسمتی یا 7Segment مثال مناسبی برای این نوع است.
در LCDهای رنگی از نوعی نور فلورسنت استفاده میشود و صفحهای گسترده از این نوع لامپ نور را به طور مساوی میتاباند تا از متناسب بودن تصویر اطمینان حاصل شود.
LCDهای ماتریسی نیز نوع دیگری از نمایشگرهای LCD هستند. برای ساخت اینگونه LCDها از دو لایه شیشهای به استفاده میشود.
به یکی از این شیشهها ردیف و به دیگری یک سطرها متصل میشوند. هر سطر به یک مدار مجتمع متصل میشود و هر کدام از نوعی ماده شفاف رسانا ساخته شده است. به این ترتیب با فرستادن جریان به هر پیکسل، کریستال مایع از هم باز میشود و نور را عبور نمیدهد. این نوع LCD مشکلات بزرگی از جمله زمان طولانی برای پاسخ دارد.
صفحه نمایشهایی که تصاویر رنگی را نشان میدهند دارای سه زیر- پیکسل سبز و آبی و قرمز هستند. برای ساخت هر پیکسل یک مدار مجتمع و یک خازن نیاز است. برای یک لپتاپ ساده که LCD آن 768×1024 پیکسل دارد 2359296 خازن و IC استفاده شده است. مشکلی که در این میان رخ میدهد این است که اگر تنها یکی از ترانزیستورها و یا خازنها به صورت دقیق کار نکنند قسمتی از صفحه از کار میافتد.
با فراگیر شدن استفاده از LCD و بزرگتر ساختن و بیشتر کردن پیکسلها، شانس داشتن ترانزیستورها و خازنهای معیوب بیشتر میشود و سازندگان هم اکنون به دنبال رفع اینگونه مشکلات و رسیدن به پیکسلهای بیشتر و بالا بردن دقت و کیفیت نمایشگرها LCD هستند.
گرانش (Gravity)
فهرست مقالات گرانش | |
مباحث علمی | مباحث کاربردی و تجربی |
تداخل سنج کوانتومی | |
تداخل سنج نوترونی | |
شتاب گرانش | |
اصل هم ارزی جرم | میدان گرانش |
اثر گرانش | حرکت سیارات و ماهواره |
گرانش در مکانیک کوانتومی | پتانسیل گرانش |
انرژی پتانسیل گرانشی | پتانسیل سرعت |
مرکز گرانش اجسام | معادلات میدان گرانش |
قانون گاوس در گرانش | سرعت فرار |
تقویت و تضیف گرانش | شتاب جاذبه زمین در میدان گرانش |
نیروی گرانش | |
از دیر باز دست کم از زمان یونانیان، همواره دو مسئله مورد توجه بود:
1. تمایل اجسام به سقوط به طرف زمین هنگام رها شدن.
2. حرکات سیارات ، از جمله خورشید و ماه که در آن زمان سیاره محسوب میشدند.
در گذشته این دو موضوع را جدا از هم میدانستند. یکی از دستاوردهای بزگ جناب آقای اسحاق نیوتن این بود که نتیجه گرفت: این دو موضوع در واقع امر واحدی هستند و از قوانین یکسانی پیروی میکنند. در سال 1665 ، پس از تعطیلی مدرسه بخاطر شیوع طاعون ، نیوتن که در آن زمان 23 سال داشت، از کمبریج به لینکلن شایر رفت. او در حدود پنجاه سال بعد نوشت:
... در همان سال (1665) این فکر به نظرم آمد که نیروی لازم برای نگه داشتن ماه در مدارش و نیروی گرانش در سطح زمین با تقریب خوبی باهم مشابهند. وویلیام استوکلی ، یکی از دوستان جوان اسحاق نیوتن مینویسد، وقتی با اسحاق نیوتن زیر درختان سیب یک باغ مشغول صرف چای بوده است اسحاق نیوتن به او گفته که ایده گرانش در یک چنین جایی به ذهنش خطور کرده است. استوکس مینویسد:« او در حالی که نشسته و در فکر فرو رفته بود، سقوط یک سیب توجهش را جلب میکند و به مفهوم گرانش پی میبرد. پس از آن به تدریج خاصیت گرانش را در مورد حرکت زمین و اجسام سماوی بکار میبرد و ... .» البته باید گفت: اینکه سیب مذکور به سر اسحاق نیوتن خورده است یا خیر معلوم نیست!
اسحاق نیوتن تا سال 1678 ، یعنی تقریبا تا 22 سال پس از درک مفهوم اساسی گرانش نتایج محاسبات خود را بطور کامل منتشر نکرد. در این سال دستاوردهایش را در کتاب مشهور اصول که از آثار بزرگ اوست منتشر کرد. از دلایلی که باعث میشد او نتایج خود را انتشار ندهد، میتوان به دو دلیل اشاره کرد: یکی شعاع زمین ، که برای انجام محاسبات لازم بود و اسحاق نیوتن آن را نمیدانست و دیگری ، اسحاق نیوتن بطور کلی از انتشار نتایج کار خود ابا داشت. زیرا مردی کمرو و درونگرا بود و از بحث و جدل نفرت داشت.
راسل در مورد او میگوید:« اگر او با مخالفتهایی که گالیله با آنها مواجه بود روبرو میشد، شاید هرگز حتی یک سطر هم منتشر نمیکرد. در واقع ، ادموند هالی (که ستاره دنبالهدار هالی به نام اوست) باعث شد اسحاق نیوتن کتاب اصول را منتشر کند. اسحاق نیوتن در کتاب اصول از حد مسائل سیب - زمین فراتر میرود و قانون گرانش خود را به تمام اجسام تعمیم میدهد.
گرانش را میتوان در سه قلمرو مطالعه کرد:
1. جاذبه بین دو جسم مانند دو سنگ و یا هر دو شیئ دیگر. اگر جه نیروی بین اجسام به روشهای دقیق قابل اندازه گیری است، ولی بسیار ضعیفتر از آن است که ما با حواس معمولی خود آنرا درک کنیم.
2. جاذبه زمین بر ما و اجسام اطراف ما که یک عامل تعیین کننده در زندگی ماست و فقط با اقدامات فوق العاده میتوانیم از آن رهایی پیدا کنیم. مانند پرتاب سفینههای فضایی که باید از قید جاذبه زمین رها شوند.
3. در مقیاس کیهانی یعنی در قلمرو منظومه شمسی و برهمکنش سیارهها و ستارهها ، گرانش نیروی غالب است.
اسحاق نیوتن توانست حرکت سیارات در منظومه شمسی و حرکت در حال سقوط در نزدیکی سطح زمین را با یک مفهوم بیان کند. به این ترتیب مکانیک زمینی و مکانیک سماوی را که قبلا از هم جدا بودند در یک نظریه واحد باهم بیان کند.
قانون گرانش جهانی
نیرویی که دو ذره به جرمهای m1 و m2 و به فاصله r ازهم به یکدیگر وارد میکنند، نیروی جاذبهای است که در امتداد خط واصل دو ذره اثر میکند و بزرگی آن برابر است با:
F = Gm1m2/r2
G یک ثابت جهانی است و مقدار آن برای تمام زوج ذرات یکسان است. این قانون گرانش جهانی اسحاق نیوتن است. برای اینکه این قانون را خوب درک کنیم بعضی خصوصیات آن را یادآور میشویم:
· نیروهای گرانش میان دو ذره ، زوج نیروهای کنش - واکنش (عمل و عکس العمل) هستند. ذره اول نیرویی به ذره دوم وارد میکند که جهت آن به طرف ذره اول (جاذبه) و در امتداد خطی است که دو ذره را به هم وصل میکند. به همین ترتیب ذره دوم نیز نیرویی به ذره اول وارد میکند که جهت آن به طرف ذره دوم (جاذبه) و در متداد خط واصل دو ذره است. بزرگی این نیروها مساوی ولی جهت آنها خلاف یکدیگر است.
· ثابت جهانی G را نباید با g که شتاب ناشی از جاذبه گرانشی زمین روی یک جسم است اشتباه کرد. ثابت G دارای بعد L3/MT2 و یک کمیت نردهای است (عددثابتی است)، در حالی که g با بعد LT-2 یک کمیت برداری است ، که نه جهانی است و نه ثابت (در نقاط مختلف زمین بسته به فاصله تا مرکز زمین تغییر میکند).
با انجام آزمایشات دقیق میتوان مقدار G را بدست آورد. این کار را برای اولین بار لرد کاوندیش در سال 1798 انجام داد. در حال حاضر مقدار پذیرفته شده برای G برابر است با:
G = 6.67×10-11
نیروی گرانش بزرگی که زمین به تمام اجسام نزدیک به سطحش وارد میکند، ناشی از جرم فوق العاده زیاد آن است. در واقع جرم زمین را میتوان با استفاده از قانون گرانش جهانی اسحاق نیوتن و مقدار محاسبه شده G در آزمایش کاوندیش تعیین کرد. به همین دلیل کاوندیش را نخستین کسی میدانند که زمین را وزن کرده است! جرم زمین را Me و جرم جسمی واقع بر سطح آنرا m میگیریم. داریم:
F = GmMe/Re2 & F = mg
mg = GmMe / Re2 → Me = g Re2/G
که Re شعاع زمین یا همان فاصله دو جسم از یکدیگر است. زیرا جرم زمین را در مرکز آن فرض میکنیم.
گرانش و لختی
نیروی گرانش وارد بر هر جسم ، همانطور که در معادله F = Gm1m2/r2 مشخص است با جرم متناسب است. به دلیل وجود این تناسب میان نیروی گرانش و جرم است که ما معمولا نظریه گرانش را شاخهای از مکانیک میدانیم، در حالی که نظریه مربوط به دیگر نیروها (الکترومغناطیسی ، هستهای و ... )را جداگانه بررسی میکنیم. یک نتیجه مهم این تناسب آن است که ما میتوانیم جرم را با اندازه گیری نیروی گرانشی وارد بر آن (وزن آن) تعیین کنیم. برای اینکار از یک نیرو سنج استفاده میکنیم، یا نیروی گرانشی وارد بر یک جرم را با نیروی گرانشی وارد بر جرم استاندارد (مثلا وزنه یک کیلو گرمی) ، به کمک ترازو مقایسه میکنیم. به عبارت دیگر برای تعیین جرم جسمی ، آنرا وزن میکنیم.
اگر بخواهیم جسم ساکنی را روی یک سطح افقی بدون اصطکاک به جلو برانیم ، متوجه میشویم که برای حرکت دادن آن نیرو لازم است، زیرا جسم لخت است و میخواهد در حال سکون باقی بماند. یا اگر در حال حرکت است، میکوشد این حالت را حفظ کند، در این حالت گرانش وجود ندارد. در فضا(دور از زمین) نیز همین نیرو برای شتاب دادن به یک جسم لازم است. این جرم است که ایجاب میکند که برای تغییر دادن حرکت جسم ، نیرو بکار رود. همین جرم است که در دینامیک در رابطه F= ma ظاهر میشود.
اما وضع دیگری نیز وجود دارد که در آن هم جرم جسم ظاهر میشود.
به عنوان مثال برای نگه داشتن جسمی در ارتفاعی بالا تر از سطح زمین ، نیرو لازم است. اگر ما جسم را نگه نداریم با حرکت شتابدار به زمین سقوط میکند. نیروی لازم برای نگه داشتن جسم در هوا از نظر بزرگی با نیروی جاذبه گرانشی میان جسم و زمین برابر است. در اینجا لختی هیچ نقشی ندارد، بلکه خاصیت جذب شدن اجسام توسط اجسام دیگری چون زمین مهم است.
تغییرات شتاب گرانشی (g) همانطور که گفتیم g ثابت نیست و از نقطهای به نقطه دیگر زمین ، بسته به فاصله آن نقطه از مرکز زمین تغییر میکند(در نقاط نزدیک سطح زمین میتوان آنرا ثابت فرض کرد که شما هم در حل مسائل همین کار را انجام میدهید و آن را 9.8 یا 10 متر بر مجذور ثانیه فرض میکنید).
اما موضوع دیگری بجز فاصله تا مرکز زمین ، نیز وجود داردکه بر g تأثیر میگذارد و آن دوران زمین است. اگر جسمی در استوا به یک نیرو سنج آویخته شده باشد، نیروهای وارد بر جسم عبارتنداز: کشش رو به بالای نیروسنج ، w ،که همان وزن ظاهری جسم است و کشش رو به پایین جاذبه گرانشی زمین که با رابطه: F = GmMe/r2 بیان میشود. این جسم در حال تعادل نیست زیرا ضمن دوران با زمین تحت تأثیر شتاب جانب مرکز aR قرار دارد. بنا براین باید نیروی جانب مرکز برآیندی به طرف مرکز زمین به جسم وارد شود. در نتیجه F ، نیروی جاذبه گرانشی (وزن واقعی جسم) باید از w ، نیروی کشش رو به بالای نیروسنج (وزن ظاهری جسم) بیشتر باشد. بنابراین: (دراستوا)
GMem/Re2 - mg = maR --------> آنگاه F - w = maR بنابراین: F = ma (نیروی برآیند)
پس: g = GMe/Re2 - aR
از آنجایی که: aR = Reω2 = Re(2π/T)2 = 4π2Re/T2 که در آن ω سرعت زاویهای دوران زمین ،T دوره تناوب و Re شعاع زمین است. در قطبها از آنجایی که شعاع دوران صفر است بنابراین: 0 = aR است، پس داریم:
g = GMe/Re2
که همان نتیجه قبلی است.
میدان گرانش
یک حقیقت اساسی درباره گرانش این است که دو جرم بر یکدیگر نیرو وارد میکنند. اگر بخواهیم میتوانیم این موضوع را بصورت تأثیر کنش مستقیم میان دو ذره در نظر بگیریم. این دیدگاه را کنش از راه دور مینامند. یعنی ذرات از راه دور و بدون اینکه باهم تماس داشته باشند روی هم اثر میگذارند. دیدگاه دیگر استفاده از مفهوم میدان است، که بنا به آن یک ذره جرم دار فضای اطرافش را طوری تغییر میدهد که در آن میدان گرانشی ایجاد میکند. این میدان بر هر ذره جرم داری که در آن قرار گیرد یک نیروی جاذبه گرانشی وارد میکند. بنابراین در تصور ما از نیروهای میان ذرات جرم دار ، میدان نقش واسطه ایفا میکند.
در مثال جرم زمین ، اگر جسمی را در مجاورت زمین قرار دهیم، نیرویی بر آن وارد میشود،این نیرو در هر نقطه از فضای اطراف زمین دارای جهت و بزرگی مشخصی است. جهت این نیرو که در راستای شعاع زمین است ، به طرف مرکز زمین و بزرگی آن برابر mg. بنابراین در هر نقطه در نزدیکی زمین میتوان یک بردار g وابسته کرد. بردار g شتابی است که جسم رها شده در هر نقطه بدست میآورد و آنرا شدت میدان گرانش در آن نقطه مینامند. چون g = F/m شدت میدان گرانش در هر نقطه را میتوان بصورت نیروی گرانشی وارد بر یکای جرم در آن نقطه تعریف کنیم.
وزن و جرم
وزن جسمی روی زمین 10 اسحاق نیوتن است. اگر این جسم را به فضا برده و بخواهیم به آن شتاب یک متر بر مجذور ثانیه بدهیم، چند اسحاق نیوتن نیرو باید وارد کنیم؟
1. یک؟
2. ده؟
3. صفر؟
4. در فضا نمیتوان به جسمی شتاب داد!
وزن هر جسم عبارت است از نیروی جاذبهای که زمین به آن وارد میکند. وزن چون از نوع نیروست ، کمیتی است برداری. جهت این بردار همان جهت نیروی گرانشی ، یعنی به طرف مرکز زمین است . بزرگی وزن بر حسب یکای نیرو یعنی اسحاق نیوتن بیان میشود. وقتی جسمی به جرم m آزادانه در خلا سقوط میکند، شتاب آن برابر شتاب گرانش «g» و نیروی وارد بر آن «w» برابر وزن خودش است. اگر از قانون دوم نیوتن (F = ma) ، برای جسمی که آزادانه سقوط میکند استفاده کنیم خواهیم داشت: w = mg. که w و g بردارهایی هستند که جهتشان متوجه مرکز زمین است. برای اینکه از سقوط جسمی جلو گیری کنیم باید نیرویی که بزرگی آن برابر بزرگی w و جهت آن به طرف بالاست به آن وارد کنیم ، به گونهای که برآیند نیروهای وارد بر جسم صفر شود. وقتی جسمی از فنری آویزان است و به حال تعادل قرار دارد، کشش فنر این نیرو را تأمین میکند.
گفتیم وزن هر جسم ، یعنی نیرویی که زمین به طرف پایین بر جسم وارد میکند، یک کمیت برداری است، جرم جسم یک کمیت نرده ای است. رابطه میان وزن وجرم بصورت w = mg است.چون g از یک نقطه زمین به نقطه دیگر آن تغییر میکند، w یعنی وزن جسمی به جرم m در مکانهای مختلف متفاوت است. بنابراین یک کیلو گرم جرم در محلی که g برابر 9.8 متر بر مجذور ثانیه است، 9.8 اسحاق نیوتن ( 9.8 = 9.8×1= w )و درمحلی که g برابر 9.78 متر بر مجذور ثانیه است، 9.78 اسحاق نیوتن وزن دارد. در نتیجه بر خلاف جرم که خاصیت ذاتی جسم است (و همیشه ثابت)،وزن یک جسم به محل آن نسبت به مرکز زمین بستگی دارد.در نقاط مختلف روی زمین ترازوهای فنری (نیرو سنجها) ، مقادیر متفاوت و ترازوهای شاهین دار ، مقادیر یکسانی را نشان میدهند (زیرا نیرو سنج وزن را نشان میدهد، ولی ترازوی شاهین دار جرم را).
در نواحی از فضا که نیروی گرانش (نیرویی که از طرف زمین بر اجسام وارد میشود) وجود ندارد، وزن یک جسم صفر است. در حالی که اثرهای لختی و در نتیجه جرم جسم نسبت به مقدار آن در روی زمین بدون تغییر میماند. در یک سفینه فضایی بلند کردن یک قطعه سربی بزرگ کار سادهای است (w = 0 )، ولی اگر فضا نورد به این قطعه لگد بزند همچنان به پایش ضربه وارد میشود (زیرا m مخالف صفر است). برای شتاب دادن به یک جسم در فضا ،همان اندازه نیرو لازم است که برای شتاب دادن آن در امتداد یک سطح افقی بدون اصطکاک در روی زمین ، زیرا جرم جسم همه جا یکسان است. اما برای نگه داشتن یک جسم در سطح زمین ، نیروی بسیار بیشتری از نیروی لازم برای نگه داشتن آن در فضا مورد نیاز است، زیرا در فضا وزن صفر است ولی در روی زمین چنین نیست.